Lifted Inequalities for 0 − 1 Mixed - Integer Bilinear Covering Sets ∗

نویسندگان

  • Kwanghun Chung
  • Jean-Philippe P. Richard
  • Mohit Tawarmalani
چکیده

4 In this paper, we study 0−1 mixed-integer bilinear covering sets. We derive several families of facet5 defining inequalities via sequence-independent lifting techniques. We then show that these sets have 6 polyhedral structures that are similar to those of certain fixed-charge single-node flow sets. As a result, we 7 obtain new facet-defining inequalities for these sets that generalize well-known lifted flow cover inequalities 8 from the integer programming literature. 9

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong valid inequalities for orthogonal disjunctions and bilinear covering sets

In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and apply a toolbo...

متن کامل

Lifted flow cover inequalities for mixed 0-1 integer programs

We investigate strong inequalities for mixed 0-1 integer programs derived from flow cover inequalities. Flow cover inequalities are usually not facet defining and need to be lifted to obtain stronger inequalities. However, because of the sequential nature of the standard lifting techniques and the complexity of the optimization problems that have to be solved to obtain lifting coefficients, lif...

متن کامل

Strong formulations for convex functions over nonconvex sets

Preliminaries. Several important classes of optimization problems include nonlinearities in the objective or constraints. Often this results in nonconvexities and a current research thrust addresses the computation of global bounds and exact solution techniques for such problems. The field is not new; one of the earliest results is the characterization of the convex hull of a box-constrained bi...

متن کامل

Lifted Cover Inequalities for 0-1 Integer Programs: Computation

We investigate the algorithmic and implementation issues related to the eeective and eecient use of lifted cover inequalities and lifted GUB cover inequalities in a branch-and-cut algorithm for 0-1 integer programming. We have tried various strategies on several test problems and we identify the best ones for use in practice. Branch-and-cut, with lifted cover inequalities as cuts, has been used...

متن کامل

Bc - Opt : a Branch-and-cut Code for Mixed Integer Programs

A branch-and-cut mixed integer programming system, called bc − opt, is described, incorporating most of the valid inequalities that have been used or suggested for such systems, namely lifted 0-1 knapsack inequalities, 0-1 gub knapsack and integer knapsack inequalities, flowcover and continuous knapsack inequalities, path inequalities for fixed charge network flow structure and Gomory mixed int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011